Energy Scale References

D0 Escale references:

- •Nim article (hep-ex/9805009)
- •Other D0 talks/notes: www-d0.fnal.gov/daniel/jesgroup/jesgroup.html

Other sources of interest:

- •CDF Z->B-BBAR (Jets + tracks)
 - •http://home.fnal.gov/~dorigo/thesis.ps
 - •http://home.fnal.gov/~dorigo/jet_corr.ps
- •ALEPH Energy Flow NIM A 360 (1995) 481

Q1: What's a Jet? all jet analyses must begin with this question

After defining the jets (choosing algorithm) the scale may be choosen

Energy Scale

A: Equivalence of particle Energy to Detector Energy

Momentum Scale

B: Equivalence of particle Momentum to Detector Momentum

Leakage?

"calorimeter jet" hadrons "parton jet"; "particle jet"

Single Particle Response

Jets are $\sim <1/3>$ EM-like, increasing with ln(E)

Jet response in hermetic detector CLT at work...

Jet scale moves $\langle E^{obs} \rangle$ to $\langle E^{obs} \rangle$ And ideally reduces overall σ

Back to Q1: What's (in) a Jet?

Run I choice (ULE) is not part of jet, subtract on average based on jet algorithm + n.

Alternate choices:

O Include ULE in jet energy

O Define ULE (Q2) Due Increasing overlap $\sqrt{3} \Rightarrow \sqrt{3}$

For some recent studies of ULE in various MC and data samples see: Fermilab-Pub-00/297 contrib. of Field&Stuart

Offset Correction

$$E_T^O = E_T^{ue} + E_T^{\Theta}$$

$$E_T^O = E_T^{ue} + \langle N_{extra} \rangle E_T^{ue} + E_T^{noise} + E_T^{pile}$$

 E_T^{ue} underlying event from spectator interactions associated with the hard collision that caused the trigger

 E_T^{Θ} Ur noise, pile-up and extra $p\overline{p}$ interactions

Use low luminosity MIN BIAS and ZB (no Hard Collison) data: $D_{uc}(\eta) = D_{MB}(\eta) - D_{ZB}^{\text{no HC}}(\eta)$

Noise, pile-up and extra $p\overline{p}$ contributions from ZB data in different luminosity bins:

$$D_{\Theta}(L,\eta) = D_{ZB}(L,\eta)$$

Subtraction of ULE (+noise & pileup)
Complicated by zero suppression effects

Cell off Cellon

Cell readout is

Zero suppressed

$$E_{\emptyset}$$

$$\sum_{\text{Cells}} E_{\text{jet}} \Theta(E_{\text{jet}}, E_{\emptyset}) + E_{\text{noise}} \Theta(E_{\text{noise}}, E_{\emptyset}) + E_{\text{use}} \Theta(E_{\text{use}}, E_{\emptyset})$$

$$\neq \sum_{\text{Cells}} E_{\text{Total}} \Theta(E_{\text{Total}}, E_{\emptyset})$$

Ejet is not a simple 1 component subtraction

$$Ejet = E_{Total} - \langle E^{uce} \rangle - \langle E^{noise} \rangle - O_c(E, \eta, L)$$

The ossset correction depends on occupancy.

Run I (cone): develop emperical occupancy correct from data to get back Ejet

Run 1 (kg): Overlay noise + ULE + generated jets
apply ZSP in Software a directly
measure effect on jets

Response Correction

Jet Respone is typically < 1.

- $h/e \neq 1$
- Uninstrumented regions
- Module to module fluctuations

Missing E_T Projection Fraction Method

Based on event energy balance in the transverse plane

In an ideal calorimeter:

$$\vec{E}_{T\gamma} + \vec{E}_T^{had} = 0$$

In the DØ calorimeter:

$$R_{em}\vec{E}_{T\gamma}+R_{had}\vec{E}_{T}^{had}=-E_{T}^{\uparrow}$$

Once photons are calibrated, $R_{em}=1$: $R_{had}=1+\frac{\vec{E}_{T}\cdot\hat{n}_{T\gamma}}{E_{T\gamma}}$

For a γ -jet two body process: $R_{iet} = R_{had}$

To avoid resolution bias and effect of a steeply falling γ cross section:

$$R_{jet}$$
versus E' with $E' = E_{T\gamma} \cosh(\eta_{jet})$

$$E' \to E_{jet}^{meas}$$
 and R_{jet} versus E_{jet}^{meas}

($E_{T\gamma}$ and η_{iet} measured with good resolution)

Cryostat Factor Correction

 F_{cry} : Ratio of R_{jet}^{EC} over R_{jet}^{CC}

SAME TECHNOLOGY $\Rightarrow F_{cry}$ flat as a function of E'

- Calibrate EC with respect to CC
- Use EC points to extend the energy reach of CC measurement

η Dependent Correction, F_{η}

$$R_{jet} = \alpha + \beta \cdot \ln(E) \Rightarrow R_{jet} = a + b \cdot \ln[\cosh(\eta)]$$

 F_{η} correction defined as the difference between

EXPECTED R_{iet} and MEASURED R_{iet} in the IC

=Detector uniformity corrections

CC Response Measurement

 F_{cry} and F_{η} make the Calorimeters "UNIFORM":

- Apply offset correction to E_{Tjet}^{meas} (\vec{E}_T STAYS THE SAME)
- Apply F_{cry} and F_{η} to E_{Tjet}^{meas} and \vec{E}_{T}

$$E_{Tjet}^{corr} = E_{Tjet}^{meas} \times F_{cry} \times F_{\eta}$$

$$\vec{E}_{T}^{corr} = \vec{E}_{T}^{meas} + \sum_{\gamma} \vec{E}_{T\gamma}^{meas} - \sum_{\gamma} \vec{E}_{T\gamma}^{corr} + \sum_{jet} \vec{E}_{Tjet}^{meas} - \sum_{jet} \vec{E}_{Tjet}^{corr}$$

$$0.9 \\ 0.86 \\ 0.86 \\ 0.86 \\ 0.86 \\ 0.86 \\ 0.87 \\ 0.89 \\ 0.89 \\ 0.89 \\ 0.89 \\ 0.80 \\$$

R_{jet} versus E_{jet}

If $h/e \neq 1 \Rightarrow \pi/e \sim 0.1 \times \ln(E(GeV))$

$$R_{jet} = A + B \cdot \ln(E_{jet}) + C \cdot [\ln(E_{jet})]^2$$

CC, EC points used below 300 GeV

MC point (hybrid data set) from convolution of HER-WIG jet events and Test Beam single particle response:

Shape of R_{jet}^{data} and R_{jet}^{hyb} agree at high $E_{jet} \Rightarrow$ use MC point to constrain the fit

A more detailed look at Response

Sample probability distribution for fit parameters:

This distribution contains information for allowed response shapes and their relative likelihoods

Outer bands - 68% CL, all params. free Inner bands - 68% CL, 1 param. free

"calorimeter jet" "parton jet"; "particle jet"

Showering

Particles emitted inside cone, but depositing energy out of cone in detector

Opposite effect can also occur leading to energy showering into cone

Transverse shower shape, 100 GeV pions

Showering

Method:

- Test your MC against jet and single particle profiles
- (un)Correct particle-level jets for detector response to get the detector energy associated w/the particle jets
- Compare fraction of this detector energy that lies w/in the jet cone (in the detector) to total detector energy

This compensates for energy showered into/out of the cone.

But... MPF method bias effects can cause double correction

$$R_{had} \equiv 1 + MPF = 1 + \frac{\vec{E}_T \cdot \hat{n}_T^{\gamma}}{E_T^{\gamma}}$$
 Missing E_T in direction of photon can be biased by widely showering jets

Solution involves some 'tuning' of limits for following particle showers

Some words about RunII

New opportunities w/ E/P measurement from tracker may be helpful for lower PT jets – MPF method still superior for high PT

Determine offset corrections from MB data + MC jets

Revisit solutions for MPF bias in showering correction

Separate b-jet scales (Z->b-bbar, gamma+bjet)

Work underway on EFLOW type corrections